Specials

All specials

IEC 60605-4 : 2.0

IEC 60605-4 : 2.0

EQUIPMENT RELIABILITY TESTING - PART 4: STATISTICAL PROCEDURES FOR EXPONENTIAL DISTRIBUTION - POINT ESTIMATES, CONFIDENCE INTERVALS, PREDICTION INTERVALS AND TOLERANCE INTERVALS

International Electrotechnical Committee

More details

Download

PDF AVAILABLE FORMATS IMMEDIATE DOWNLOAD
$34.32

$78.00

(price reduced by 56 %)

Table of Contents

FOREWORD<br>1 Scope<br>2 Normative references<br>3 Definitions and Symbols<br>&nbsp;&nbsp;&nbsp;3.1 Definitions<br>&nbsp;&nbsp;&nbsp;3.2 Symbols<br>4 Assumptions and requirements<br>&nbsp;&nbsp;&nbsp;4.1 Assumptions and information required for point <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;estimates and confidence intervals<br>&nbsp;&nbsp;&nbsp;4.2 Assumptions and requirements for prediction <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;intervals<br>&nbsp;&nbsp;&nbsp;4.3 Assumptions and requirements for tolerance <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;intervals<br>5 Procedure for calculating point estimates and <br>&nbsp;&nbsp;&nbsp;confidence intervals<br>&nbsp;&nbsp;&nbsp;5.1 Time terminated tests<br>&nbsp;&nbsp;&nbsp;5.2 Analytical procedure - Failure terminated tests<br>6 Prediction intervals for the number of failures in a <br>&nbsp;&nbsp;&nbsp;future period<br>&nbsp;&nbsp;&nbsp;6.1 Two-sided prediction intervals r[L2] and r[U2]<br>&nbsp;&nbsp;&nbsp;6.2 One-sided prediction interval<br>7 Procedure for assigning tolerance intervals<br>&nbsp;&nbsp;&nbsp;7.1 Upper Poisson tolerance bound<br>&nbsp;&nbsp;&nbsp;7.2 Lower Poisson tolerance bound<br>Annex A (informative) Examples <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A.1 Point estimate of MTTF<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A.2 Application of lower one-sided 90 % confidence <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;limit on mean time to failure (MTTF)<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A.3 Application of two-sided 90 % confidence limits <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;on MTTF<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A.4 Application of a two-sided 90 % prediction <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;interval<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A.5 Application of upper 90 % tolerance bound at <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;95 % confidence<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;A.6 Application of lower 90 % tolerance bound at <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;95 % confidence<br>Annex B (informative) Relation between confidence, <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;prediction and tolerance intervals<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;B.1 Confidence intervals<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;B.2 Prediction intervals<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;B.3 Tolerance intervals<br>Annex C (normative) Computation of accumulated test <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;time T*<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;C.1 Case 1, one repaired item with constant failure <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;intensity <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;C.2 Case 2, more than one repaired item with <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;identical constant failure intensities<br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;C.3 Case 3, non-repaired items<br>Annex D (normative) Tables of fractiles of the <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;chi-squared distribution: X[2][alpha] (nu)<br>Annex E (normative) Integral of the chi-squared <br>&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;&nbsp;distribution and cumulative Poisson distribution <br>Annex F (normative) 0,95 fractiles of the F distribution<br>Bibliography

Abstract

Gives statistical methods for evaluating point estimates, confidence intervals, prediction intervals and tolerance intervals for the failure rate of items whose time to failure follows an exponential distribution.

General Product Information

Document Type Standard
Status Current
Publisher International Electrotechnical Committee
Committee TC 56

Contact us